
computers are bad
You are receiving this facsimile because you signed up for fax delivery of this
newsletter. To stop delivery, contact Computers Are Bad by email or fax.

https://computer.rip - me@computer.rip - fax: +1 (505) 926-5492

2021-07-21 the desqtop
I believe I have mentioned before that the history of early GUI environments for PCs
is sufficiently complex and obscure that it’s very common to run into incorrect
information. This is markedly true of the Wikipedia article on DESQview, which
“incorrects” a misconception by stating another incorrect fact. Since it’s Wikipedia,
the free encyclopedia that anyone can edit, I assume that if I correct it the change
will be reverted by bot within seconds.
False claims about TopView aside, the Wikipedia article on DESQview makes most of the
salient points about its history. That said, I would like to talk about it a bit
because DESQview is a neat example of an argument I’ve made, and it happens to
dovetail into another corner of GUI history that I’ll bring up here and there.
DESQview was a multitasking GUI built by a company called Quarterdeck. It was
released for DOS in 1985, so several years after Visi On, and right in the thicket of
most of the DOS GUIs. DESQview is a GUI, though, only in the sense of the logical
paradigm of user interactions. It actually runs in textmode, using the DOS extended
ASCII box drawing figures to create windows and menus, and using letters and symbols
as buttons. It’s similar in this regard to the relatively modern Twin (Terminal
Windows), and could be viewed as a souped up terminal multiplexer like tmux.
Despite running in textmode, DESQview has basically all of the WIMP (Windows, Icons,
Menus, Pointer) behavior that we consider typical of a GUI. To be fair, by virtue of
running in textmode it fundamentally lacks icons, but so did a number of other early
GUIs that ran in graphics mode. Any one of us could sit down in front of a machine
running DESQview and figure out the basic interactions without much trouble, something
that can’t be said of most terminal multiplexers. Here is an example of the
philosophical divide between TUI and GUI, or more specifically between unguided and
guided: terminal multiplexers like screen and tmux are unguided interfaces that
expect the user to read the manual. More typical of the GUI, DESQview attempts to
make most functionality fairly discoverable to the user.
So in that light, consider this sentence from the Wikipedia article: “DESQview is not
a GUI (Graphical User Interface) operating system. Rather, it is a non-graphical,
windowed shell that runs in real mode on top of DOS, although it can run on any Intel
8086- or Intel 80286-based PC.”
It’s not a GUI, it’s a non-graphical windowed shell. It runs in real mode on top of
DOS, which is true of basically all ’80s GUIs including Windows. It has windows, and
it’s a shell, but it’s not a GUI because it’s non-graphical. To me, at least, this
whole thing is a bit farcical. The desire here to exclude DESQview from the category
of GUIs only serves to reinforce that the interaction concept that we refer to as the

1



“GUI” is actually quite divorced from the difference between text and raster displays.
You can always employ ASCII art to pretend you have a graphical display, after all.
Another interesting component of DESQview to discuss is its support for DOS
applications. We saw with Visi On that there is sort of a basic conflict involved in
developing a DOS GUI: if it runs on top of DOS, users will want to be able to run
their existing DOS software. But DOS software assumes full control of the machine and
does not play well with multitasking. Visi On went the route of throwing DOS out the
window and requiring that software be written specifically for Visi On [1]. DESQview
went the opposite, more consumer-friendly route, of bending over backwards to work
with the existing DOS stable.
DESQview had a significant leg up on this venture because its developer, Quarterdeck,
had previously sold a DOS task-switcher called Desq. Task switchers are not really a
familiar part of the modern computing landscape because of the ubiquity of
multitasking operating systems. Back in the ’80s, though, most microcomputer
operating systems were single-task and so the ability to run multiple programs at the
same time could only be simulated. A task switcher created something like
multitasking by doing exactly what it sounds like: switching out the tasks.
Specifically, Desq acted as a DOS TSR, or Terminate and Stay Resident. When launched,
Desq installed an interrupt handler and then terminated. The interrupt handler fired
when keyboard keys were pressed (remember at this point the keyboard on PCs was
connected via the 8042 keyboard controller, which generated interrupts on each
keypress). The interrupt handler could basically inspect each keyboard event and
decide whether to act on it. In effect, a TSR could implement a “global hotkey.”
In the case of Desq, the hotkey resulted in Desq seizing control of the machine and
stashing the contents of memory. It then presented a utility that allowed the user to
select another task, which would be copied into memory and then jumped to. The effect
was somewhat like switching windows, but you could only have one program visible at a
time.
You might be wondering where that memory was stashed to. This gets into the
peculiarities of x86 memory. By the time these task switcher utilities hit the scene,
“extended memory” beyond the 1 MB real mode limit was fairly common on PCs. But,
real-mode applications were unable to access this extended memory without putting in
extra effort [2]. In practice, most DOS applications only ever used the
real-mode-addressable memory, so task switchers could somewhat safely swap the first
megabyte “basic memory” into the extended memory without the next application messing
with it. Of course there was no guarantee, some applications did implement extended
memory support and this generally made a program “incompatible” with task switching.
For Quarterdeck, DESQview was basically an extension of Desq, so it was natural to
continue to support switching between conventional DOS applications. DESQview did
much the same thing, loading and unloading DOS applications, but also using driver
tricks to cause applications to “draw” text to their own windows. Like Desq, DESQview
could “multitask” only the sense that it could react to interrupts, so the user was
effectively “locked in” to the active window until the user triggered DESQview to
seize control by use of a keyboard shortcut.
DESQview is an important example of a GUI system that is very much transitional
between text and raster, and between TUI and GUI. Other similar examples include
TopView, DOS Shell, and Norton Commander, the latter two of which were ostensibly file
managers but grew to include a number of GUI features. Interestingly, though,

2



DESQview appeared on the scene after the first text mode competitors. While raster
mode has obvious advantages today for GUI software, there were huge additional
challenges involved in using raster mode at this point in time. For one, it made
compatibility with existing software extremely difficult.
Perhaps more importantly, though, the entire business computing world was on
text-based machines, and text was mostly viewed as being perfectly sufficient. There
just wasn’t a lot of pressure to provide raster operating systems, because people
hadn’t really seen raster mode put to good use yet.
There are a couple of places to go from here, and you know that I will go to both of
them: first, we will eventually need to get to the topic of Windows. I will probably
discuss early Windows and TopView somewhat in parallel, because the comparison is
interesting and because the competition of Windows and TopView represents yet another
twist in the tumultuous partnership between Microsoft and IBM. In more of a fork,
though, I will also start into a topic closely related to GUI history: network
delivery of GUIs.
I said that DESQview dovetailed into another interesting topic, and it’s network GUIs.
DESQview was followed by DESQview/X... an X server. While this partially enabled the
porting of X applications to DOS, it more importantly contributed to the first wave of
thin client GUI systems.
[1] This isn’t quite true, it actually is possible to run DOS applications under Visi
On but with significant limitations that mostly prevented actually using the feature.
[2] If this sounds a bit amusing, keep in mind that we had basically the exact same
problem years later with the 3-ish GB 32-bit limit. Memory beyond the first 3-ish
gigabytes on a 32-bit machine could be used only if the application put in extra
effort to support it (in that case by implementing PAE rather than XMS, the DOS
extended memory API).

3


	computers are bad
	2021-07-21 the desqtop

