
computers are bad
You are receiving this facsimile because you signed up for fax delivery of this
newsletter. To stop delivery, contact Computers Are Bad by email or fax.

https://computer.rip - me@computer.rip - fax: +1 (505) 926-5492

2021-11-06 smart audio for the smart home
Sonos offers a popular line of WiFi-based networked speakers that are essentially a
consumer distributed audio system. It’s a (relatively) affordable and easy to use
spin on the network-based audio rendering systems already common in large building
background music/PA and, increasingly, entertainment venue and theatrical sound
reinforcement. The core of it is this: instead of distributing audio from one
amplifier position to multiple speakers over expensive and lossy (in commercial
contexts) or difficult to install (in consumer contexts) speaker-level audio cables,
audio is distributed over an IP network to a small amplifier colocated with each
speaker [1].
This isn’t a new concept, although Sonos had to invest considerable effort in getting
it to function reliably (without noticeable synchronization issues) over unreliable
and highly variable consumer WiFi networks. From the perspective of commercial audio,
it’s just a more consumer-friendly version of Dante or Q-LAN. From the perspective of
consumer audio, it’s either revolutionary, or the sad specter of two decades of effort
in network-enabled consumer AV systems. After all the work that was done, and all the
technologies that could have succeeded, Sonos is what we ended up with: a
feature-incomplete, walled-garden knockoff of DLNA.
Yes, I’m being unfair to Sonos. The biggest problem that Sonos figured out how to
solve, precise and reliable synchronization of audio renderers without special network
facilities like PTP, isn’t one that DLNA attempted to address. And it remains a hard
problem today; even my brand-new bluetooth earbuds regularly experience
desynchronization problems when my phone’s mediocre Bluetooth stack gets behind (maybe
my ailing phone is more to blame than theoretical complexity).
But every time I really look at today’s home media streaming and management landscape,
which is largely dominated by Sonos, Apple’s AirPlay, and Google’s ChromeCast, it’s
very hard not to see it as a shadow of DLNA.
So what is DLNA, and why did it fail? In general, why is it that all of the home
network AV efforts of the late ’90s through the ’00s amounted to nothing, and were
replaced by thin, vendor-locked “cast” protocols?
The answer, of course, is Microsoft and Capitalism (rarely have there been two more
ominous bedfellows). But let’s get there the long way, starting with the evolving
home media landscape of the late ’90s.
The compact disc, or CD, came into widespread popularity in the late ’80s and
represented a huge change in music distribution. Besides the low cost, small size,
and excellent fidelity of CDs, they were the first widespread consumer audio recording

1

format that was digital. For the first time it was, in principle, possible to create
an exact digital copy of CD. Once written to another storage device, the CD could be
handled as computer data [2].
“CD Ripping” actually did not become especially common until the early ’00s. In
practice, “ripping” audio CDs from PCs is somewhat complex because of the surprisingly
archaic architecture of PATA CD drives. Early computers, in the ’90s, often weren’t
capable of fast enough I/O to read an audio CD at 1x speed (meaning as fast as the
audio bitrate, allowing real-time decoding). Even for those that were, audio CDs
amounted to hundreds of megabytes of data and hard drives that large were very costly.
As a result, PC CD drives played audio CDs by behaving as plain old CD players and
outputting analogue audio. Some of you may remember installing an IDE CD drive and
having to connect the three-wire analogue audio output from the CD drive to the sound
card. Some of you may even remember the less common CD drives with discrete playback
control buttons on the front panel, allowing it to be used to play music without any
media software to control it.
These CD drives, when playing audio, behaved a lot like smartphones making phone
calls: the computer actually wasn’t “in the loop” at all, all it did was send the CD
drive commands to play/pause/etc and the CD drive decoded the audio and converted it
to analog internally, sending it straight to the amplifiers in the sound card. With
this architecture, the way to “rip” a CD was actually to tell the CD drive to start
playback and then use the soundcard to record its analogue output. This ran only at
real-time speed, not all soundcards were capable without an external jumper from the
line out to line in, and the double conversion reduced quality. It didn’t take off,
although Gnome’s Sound Juicer continued to use this method until around 2005.
The much better method, of actually reading the CD as data and decoding the audio in
software, took off in the ’00s, mostly in the form of WinAmp 5.0 and Windows Media
Player in XP. It greatly accelerated a trend which already seemed clear to industry:
consumers would purchase their music on physical media (downloading it was still
infeasible on most consumer’s internet connections), but in the future they would
immediately rip it, store it on a central device, and then play it back in digital
form using a variety of devices.
Microsoft leaned hard into this vision of the future, not just a little because it
strongly implied multiple licensed copies of Windows being involved in the modern home
stereo. A significant development effort that entailed the addition of multiple new
operating system features lead to Windows XP Media Center Edition, or MCE, released in
2002. MCE was a really impressive piece of software for the time. An MCE computer
wasn’t just a computer, it was a “home media hub” capable of consuming media from
multiple formats, storing it, and then streaming it over the network to multiple
devices. MCE introduced consumers to significant expansions of the role of the
“computer” in media. For example, MCE supported playback and recording of television
from cable and multiple OEMs sold MCE desktops with preinstalled cable tuners. An XP
MCE machine could compete with Tivo, but with distributed playback which Tivo would
not introduce until later.
Microsoft leveraged their newfound place in the home theater, the Xbox, to create an
ecosystem around the platform. First-gen Xbox consoles with a purchased upgrade and
all Xbox 360 consoles could function as “media center extenders,” which entailed
opening an RDP session to the MCE machine to present the MCE interface on the Xbox.
Extensions to RDP implemented to support this feature, namely efficient streaming of
HD video over RDP without re-encoding, went on to drive the “network projector”
functionality between Windows Vista and various Ethernet-enabled projectors. This was

2

arguably the primary precursor to the modern ChromeCast as RDP introduced some (but
not nearly all) of the offloading to the streaming target that ChromeCast relies on.
In fact the Media Center Extender and Network Projectors are closely related both
technically and in that they have both faded into obscurity. Modern “network
projectors” typically rely on the simpler, AirPlay-like and Microsoft-backed but open
Miracast protocol [3].
Because Media Center Extender relied on RDP, it essentially required that the Extender
implement a good portion of the Windows graphics stack (remember that RDP is basically
a standardization of Citrix’s early application streaming work, which made a lot of
assumptions about a Windows client connecting to Citrix/Windows server environment and
offloaded most of the drawing to the client). This was no problem for the Xbox, which
ran Windows, but the improvements to RDP and open standards that make non-Windows RDP
clients practical today were not yet complete in the ’00s and it was unreasonable to
expect conventional consumer A/V manufacturers to implement the Extender
functionality. Microsoft didn’t make anything near a full line of home media
products, though, and so it needed some kind of Ecosystem.
Conveniently, Intel was invested in the exact same issue, having begun to introduce a
set of Intel-branded media streaming solutions (including WiDi, a true unicorn to see
in the wild, which allowed certain Intel WiFi adapters to stream video to a television
well before this was a common consumer capability). Because media streaming required
fast I/O and network adapters, both Intel offerings, it had real potential to expand
consumer interest in Intel’s then commercial products. Intel kicked off, and
recruited Microsoft and consumer A/V giant Sony into, a new organization called the
Digital Living Network Alliance. That’s DLNA.
DLNA built on UPnP, the then-leading consumer network auto-discovery and
autoconfiguration protocol, to define a set of network standards for the new
integrated home media network. DLNA defined how a set of devices broadly categorized
as Media Servers, Media Players, and Media Renderers would discover each other and
exchange signaling in order to establish various types of real-time media streams and
perform remote control. As a broad overview, a Media Server offered one or more types
of stored (e.g. files on disk) or real-time (e.g. cable tuner) media to the network
using established protocols like RTSP. A Media Player allowed a user to browse the
contents of any available Media Servers and control playback. A Media Renderer
received media from the Media Server and decoded it for playback.
The separation of Media Player and Media Renderer may seem a bit odd, and in practice
they were usually both features of the same product, but enabled network-based remote
control of the type we see today with Spotify Connect. That is, you could launch a
Media Player on your computer (say Windows Media Player) and use it to play audio on
the Media Renderer integrated into your stereo receiver. Other Media Players could
discover the renderer and control its playback as well. This was all possible in
Windows XP, although it was very seldom used because of the paucity of Media
Renderers.
The problem is not necessarily that DLNA failed to spawn an ecosystem. While
Microsoft added pretty complete DLNA support to Windows through MCE, Windows Media
Player, and Explorer (where it became intertwined with the Homegroup peer-to-peer
network sharing system), JRiver and TwonkyMedia were major third-party commercial DLNA
Media Servers. On the open source side, Xbox Media Center (XBMC), now known as Kodi,
had fairly strong DLNA support. Plex, still a fairly popular home media system today,
originated as a port and enhancement of XBMC and went on to gain even more complete
DLNA support. Even Windows Media Center itself was extensible by third-parties,

3

providing a public API to add applications and features to the MCE interface.
Years ago, around 2008, I successfully interoperated TwonkyMedia, Plex, Windows Media
Player, and a Logitech hardware renderer all via DLNA. This has become more difficult
over time rather than less, as the market for DLNA-capable hardware has thinned and
DLNA software support has fallen out of maintenance.
One major challenge that DLNA faced was the low level of consumer readiness for fully
digital home media. It’s an obvious problem that consumers weren’t yet used to the
idea of “smart TVs” and other devices that would integrate DLNA clients. DLNA clients
were somewhat common in devices like HD-DVD and Blu-Ray players (these already needed
a pretty significant software stack so adding a DLNA client wasn’t much extra effort),
but it tended to be a second-class feature that was minimally marketed and usually
also minimally implemented. I remember a particular LG Blu-Ray player that had a
mostly feature-complete DLNA Media Player and Media Renderer but struggled to actually
play anything because somewhere between its chipset and 802.11g, network streaming
performance was too poor to keep up with 1080p content.
And 802.11g is part of the problem as well. Home networks were surprisingly bad in
the early to mid ’00s. I suppose it shouldn’t be that surprising, because “home
network” was largely a new idea in that time period that was displacing a single
computer directly connected to a modem. Broadband was taking over in cities, but
DOCSIS and DSL modems still provided a USB interface and it was not uncommon for
people to use it. Almost no one ran ethernet because of the high cost of installing
it concealed and the frustration and aesthetic impact of running it along floorboards
[4]. 802.11g, the dominant WiFi standard, was nominally fast enough for all kinds of
media streaming but in practice congestion and range issues made 802.11g performance
pretty terrible most of the time. All of this is still mostly true today, but we’ve
gone from nominal WiFi speeds of 54mbps to well over a gigabit, which allows for a
solid 20mbps even after the very substantial performance reduction in most real
environments.
The biggest problem, though, is the troublesome concept of a “server” in the home.
Microsoft seemed to operate, at the time, on the assumption that a desktop computer
would serve as the Media Server. In fact, MCE specifically introduced power
management enhancements to Windows XP intended to allow the MCE machine to stay in
standby mode but wake when needed for media recording or streaming (this never seems
to have worked very well). Microsoft further reinforced this concept with their
marketing strategy for MCE, which was only released to developers and OEMs and could
not be purchased as a regular standalone license. If you were going to use MCE, it
was going to be on a desktop computer sold to serve as a hybrid workstation and media
server.
Unfortunately, around the same time period the household desktop started to become a
less common fixture. Lower prices and better performance from laptops could free up a
desk and add a lot of flexibility, and consumers were just getting less excited about
buying a mid-tower. And besides, the hard drive capacities of the time made a normal
desktop somewhat limited as a media server. Remember, this was back in that awkward
period of physical media where it was common for desktops to have two optical drives
because people wanted a DVD player and a CD burner, and no one had figured out how to
economically fit both into one device yet. Hard drives were usually in the hundreds
of GB only.
What was needed, it seemed, was some sort of home media server appliance that was
compact, affordable, and user-friendly enough that people would consider it a typical

4

network appliance like a router/AP combo. That’s sort of what Apple delivered in the
AirPort Time Capsule (and then later kind of in the Apple TV, it got confusing), and
pretty much what we would call a consumer NAS today (like a Drobo or QNAP or
something). Back in the mid ’00s neither of these options were available on the
market, and most people weren’t going to watch the episode of Screen Savers about
connecting a JBOD to a desktop on the cheap. So, in 2007, Microsoft served up a real
wonder: Windows Home Server.
Windows Home Server was a stripped down (although surprisingly little) version of
Windows Server 2003 R2, intended to be easily set up and managed by a consumer using a
desktop client called the Windows Home Server Console. The Console was a bit like the
MMC in principle, but with fewer features and more wizards. Although I’m having a
hard time confirming this, I believe it actually worked via RDP using the Virtual App
technology, meaning that the actual Console ran on the server and only the GUI drawing
occurred on the client. This probably eased implementation but had the result that
you could only really manage Windows Server from Windows, which did not help at all
against Apple’s widely perceived media dominance.
Not a lot of Windows Home Server devices made it to the market. HP released several,
one of which I used to own. The larger HP Home Servers were pretty similar to a
modern consumer NAS, with multiple front-accessible drive bays. Home Server
functioned (perhaps first and foremost) as a DLNA server, but also offered a number of
other services like backup, brokering RDP connections from the internet for remote
desktop, and a web-based file browser to get your files remotely--naturally tied into
.NET Passport. Home Server was extensible and third-party software could be installed
from a small app store and managed from the Console; both Plex and Twonky offered Home
Server versions at the time. Several commercial antivirus packages were available as
well, as this was a bit before Microsoft took antivirus and HIDS on as a first-party
component, so Norton and McAffee could still make a lot of money off of getting you to
pay for one more license. In fact the Home Server versions of these antivirus
products were interesting because they often functioned more like a miniature
enterprise antivirus/HIDS platform, centrally controlling and monitoring your
host-based security products from the Home Server.
Windows Server also introduced a significant new feature called Drive Extender, which
was a high-level file system feature that allowed the user to combine multiple drives
into one logical drive and use multiple drives for redundancy, all in a way which was
largely agnostic to the drives and interfaces in use. This was presumably a response
to the high cost of the hardware RAID controllers that served the same purpose in most
“real” Windows Server machines, but it compared favorably with the software-first
approach to storage management that would shortly after spread through the POSIX world
in the forms of ZFS and Btrfs. Ironically Drive Extender was a source of a lot of
frustration and data loss as it turned out to buggy, which is perhaps why Microsoft
ignominiously killed the feature along with Windows Server. Years later later it
would reappear, seemingly in a much reworked form, under the name Storage Spaces.
And what would you guess happened with Windows Home Server? That’s right, it failed
to gain traction and slowly faded away. Windows Home Server 2011 did make it to the
light of day but proved to be the last version of the concept.
Ultimately I think it was a victim of Microsoft’s usual failures: it addressed a new
use-case rather than an existing one, so it wasn’t something that consumers had much
interest in to begin with. Microsoft massively failed at creating a marketing
campaign that would convince consumers otherwise. The cost of Home Server devices was
pretty high (for much the same reasons that consumer NAS continue to be rather

5

expensive today), and at the end of the day it just kind of sucked. In a fashion very
typical of Microsoft, it had a lot of interesting and innovative features but the user
experience and general level of polish were surprisingly poor. The Console, I
remember, was sometimes nearly impossible to get to connect without rebooting the
server. The Drive Extender faults lead to a lot of instances of data loss which then
lead to bad press. It formed a part of Microsoft’s generally confusing and poorly
designed home sharing experience, later Homegroups, and so got tangled up in all of
the uncertainty and poor usability of those features (for example to easily get access
to the server’s storage via SMB). The whole thing was a failure to launch.
And that sort of sums up the fate of DLNA as well: despite the best efforts of its
promoters, DLNA never really got to a position where it was attractive to consumers.
It was mostly intended to solve a problem that consumers didn’t yet have (access to
their non-existent local media library and their non-existent computer cable tuner
[5]), and time has shown would never really have. The ecosystem of DLNA products,
outside of Windows, was never that large. Dedicated media renderers never gained
consumer adoption, and devices that threw in DLNA as a value-add (like a lot of HD-DVD
players) did a bad job and didn’t promote it. DLNA was complex and a lot of
implementations didn’t work all that well on home networks, which was also true of
related technologies (like SMB file sharing) that were important parts of the whole
home network ecosystem.
Moreover, DLNA was wiped out by two trends: the cloud, and proprietary casting
systems.
First, the cloud: the idea that consumers would have a large local library of music,
TV shows, and movies, has never really materialized. The number of people who have a
multi-terabyte local media collection is vanishingly small and they are basically all
prolific pirates, which makes the broader media industry uninterested in keeping them
happy. In fact much of the media industry worked to actively discourage this kind of
use pattern, because it is difficult to monetize in a reliable way.
Instead, most consumers get their media from a cloud-based streaming service like
Spotify, which has no requirement for any particular features on the local network.
Since these types of services already need significant cloud support, it becomes
easier to implement features like casting and network remote control within the
product itself, without any need (or support) for open standards. No one needs DLNA
because they use Spotify, and Spotify has worked commercial partnerships to get
Spotify Cast support in their A/V devices.
Second, proprietary casting systems: one of the features but also, in hindsight,
defects of DLNA was its underlying assumption of a peer-to-peer “matrix” system in
which many devices interacted with many devices in a flexible way. In practice, 90%
of consumer use cases can be solved by a much simpler system in which a media renderer
operates under direct remote control (and perhaps receiving media directly from) of a
computer or phone. Miracast, for example, operated in this fashion and while it never
became that common it was much more practical to integrate Miracast support into a
device like a TV than a DLNA renderer and player.
Moreover, casting features offer a compelling opportunity for vendor lock-in, since it
is natural to integrate them with operating systems and specific applications. While
Microsoft made some effort to promote the Miracast standard it was lackluster at best,
so the whole space was dominated by Apple (which had a head start in the form of
iTune’s remote playback capabilities and massive leverage by integrating the feature
into iOS) and Google (which mostly won by making the Chromecast extremely cheap,

6

although leveraging the YouTube app was also a major boon). Neither of these
companies have much interest in facilitating a multi-vendor ecosystem, and in the case
of consumer A/V devices where they have little strength they operated for closed
partnerships with device manufacturers over open standards. Along with commercial
incentives the scheme works: my TV supports the closed standards AirPlay and
Chromecast, but ironically not the open standard Miracast. The only device I have
with integrated Miracast support is a no-brand sub-$200 DLP projector, where it works
very well.
DLNA formally dissolved in 2017, although the writing was on the wall as early as 2010
when Spotify began to transform the way music was consumed. Similar capabilities are
now found in various vendor-proprietary systems, but few of these approach the
original ambitions of DLNA. A huge industry preference for cloud-intermediated
platforms and increasing consolidation of home media onto one of a small number of
walled gardens makes any serious resurgence of a DLNA-like project unlikely.
And Sonos? I don’t want to be too mean to Sonos, the technology is pretty cool. I
just have a hard time dropping $500 on a speaker that handles the unsolved problems of
2008 but not the solved ones. These newer distributed media systems (also Yamaha
Musicast, for example) are impressive but fail to provide the flexible, multi-source
matrix architecture that DLNA had once put within reach.
At the end of the day, who killed DLNA? In some ways DLNA was ahead of its time, as it
required better home networks than most people had and enabled a media consumption
pattern that was the future, not the present. Of course it was ahead of a time that
turned out not to exist, as the cloud streaming services took over. In this way,
technological progress (or more cynically the twisted economics of the cloud) killed
DLNA. Microsoft, and to a lesser extent Intel, killed DLNA through poor marketing, few
partnerships, and repeatedly bungled products. Apple and Google killed DLNA by seeing
a simpler and more commercially advantageous solution and making it widespread (and we
can’t blame them for this too much, as AirPlay and ChromeCast really are plainly
easier to implement well than DLNA ever was).
And, you know, capitalism killed DLNA, because as an open-standards distributed system
its profit-making potential was always limited. The consumer A/V industry that could
have flocked to DLNA because it offered wide interoperability instead flocked to the
proprietary standards because they offered money. Heavyweights Apple and Google were
playing for keeps. Microsoft’s unusually generous dedication to open systems
ultimately left them holding the bag, and to this day Windows lacks a coherent media
streaming ecosystem.
Also frankly all the DLNA products pretty much sucked but hey, I’m running on
nostalgia.
[1] This approach can be used as an alternative to, or in combination with,
high-voltage audio systems which we have discussed before.
[2] Due to the surprisingly analogue CD mastering process and the use of generous
error correction and error tolerance in CD playback, it is surprisingly common for it
to not actually be possible to create an exact copy. But the general point still
stands.
[3] Miracast is kinda-sorta a subset of WiFi, being standardized by the WiFi alliance,
and builds on previous HD-media-over-WiFi efforts like Intel WiDi. These were
tremendously unsuccessful but are important precursors of ChromeCast and AirPlay. A

7

https://computer.rip/2021-02-11-the-third-and-up-broadcasts.html

lot of devices, including all Windows machines, support Miracast but it’s pretty rare
to see it used in practice as TV manufacturers have not been enthusiastic about it
(which is to say Microsoft has not incentivized integrated Miracast in the way that
Apple has incentivized integrated AirPlay).
[4] This is still basically true today, although structured wiring has made some
inroads in new, especially multi-family, construction. Of course I continue to meet
people who live in a home or apartment with structured ethernet and CATV who don’t
even realize it or don’t understand how to use it. Consumer interest in plugging
cables into things remains low.
[5] In fact the whole DLNA story is tied up in the CableCard story, which I’ll
probably write about in the future. The short version is that the whole idea of using
an arbitrary tuner for a cable subscription was unpopular with cable carriers and hard
to implement. Cable carriers preferred to provide their own set-top boxes and DVRs,
which consumers were mostly happy with. The concept of connecting your cable, or even
TV antenna, to a computer just never really went anywhere.

8

	computers are bad
	2021-11-06 smart audio for the smart home

