
computers are bad

https://computer.rip - me@computer.rip - fax: +1 (505) 926-5492

2024-01-06 usb on the go

USB, the Universal Serial Bus, was first released in 1996. It did not achieve widespread
adoption until some years later; for most of the '90s RS-232-ish serial and its awkward
sibling the parallel port were the norm for external peripheral. It's sort of surprising that
USB didn't take off faster, considering the significant advantages it had over conventional
serial. Most significantly, USB was self-configuring: when you plugged a device into a host, a
negotiation was performed to detect a configuration supported by both ends. No more decoding
labels like 9600 8N1 and then trying both flow control modes!

There are some significant architectural differences between USB and conventional serial that
come out of autoconfiguration. Serial ports had no real sense of which end was which. Terms
like DTE and DCE were sometimes used, but they were a holdover from the far more prescriptive
genuine RS-232 standard (which PCs and most peripherals did not follow) and often
inconsistently applied by manufacturers. All that really mattered to a serial connection is
that one device's TX pin went to the other device's RX pin, and vice versa. The real
differentiation between DCE and DTE was the placement of these pins: in principle, a computer
would have them one way around, and a peripheral the other way around. This meant that a
straight-through cable would result in a crossed-over configuration, as expected.

In practice, plenty of peripherals used the same DE-9 wiring convention as PCs, and sometimes
you wanted to connect two PCs to each other. Some peripherals used 8p8c modular jacks, some
peripherals used real RS-232 connectors, and some peripherals used monstrosities that could
only have emerged from the nightmares of their creators. The TX pin often ended up connected
to the TX pin and vice versa. This did not work. The solution, as we so often see in
networking, was a special cable that crossed over the TX and RX wires within the cable (or
adapter). For historical reasons this was referred to as a null modem cable.

One of the other things that was not well standardized with serial connections was the gender
of the connectors. Even when both ends features the PC-standard DE-9, there was some
inconsistency over the gender of the connectors on the devices and on the cable. Most people
who interact with serial with any regularity probably have a small assortment of "gender
changers" and null-modem shims in their junk drawer. Sometimes you can figure out the correct
configuration from device manuals (the best manuals provide a full pinout), but often you end
up guessing, stringing together adapters until the genders fit and then trying with and
without a null modem adapter.

You will notice that we rarely go through this exercise today. For that we can thank USB's
very prescriptive standards for connectors on devices and cables. The USB standard specifies
three basic connectors, A, B, and C. There are variants of some connectors, mostly for size
(mini-B, micro-B, even a less commonly used mini-A and micro-A). For the moment, we will
ignore C, which came along later and massively complicated the situation. Until 2014, there
was only A and B. Hosts had A, and devices had B.

Yes, USB fundamentally employs a host-device architecture. When you connect two things with

1

https://computer.rip/2021-01-12-taking-this-serially.html
https://computer.rip/2023-01-29-the-parallel-port.html


USB, one is the host, and the other is the device. This differentiation is important, not just
for the cable, but for the protocol itself. USB prior to 3, for example, does not feature
interrupts. The host must poll the device for new data. The host also has responsibility for
enumeration of devices to facilitate autoconfiguration, and for flow control throughout a tree
of USB devices.

This architecture makes perfect sense for USB's original 1990s use-case of connecting
peripherals (like mice) to hosts (like PCs). In fact, it worked so well that once USB1.1
addressed some key limitations it became completely ubiquitous. Microsoft used the term
"legacy-free PC" to identify a new generation of PCs at the very end of the '90s and early
'00s. While there were multiple criteria for the designation, the most visible to users was
the elimination of multiple traditional ports (like the game port! remember those!) in favor
of USB.

Times change, and so do interconnects. The consumer electronics industry made leaps and bounds
during the '00s and "peripheral" devices became increasingly sophisticated. The introduction
of portables running sophisticated operating systems pushed the host-device model to a
breaking point. It is, of course, tempting to talk about this revolution in the context of the
iPhone. I never had an iPhone though, so the history of the iDevice doesn't have quite the
romance to me that it has to so many in this space [1]. Instead, let's talk about Nokia. If
there is a Windows XP to Apple's iPhone, it's probably Nokia. They tried so hard, and got so
far, but [...].

The Nokia 770 Internet Tablet was not by any means the first tablet computer, but it was
definitely a notable early example. Introduced in 2005, it premiered the Linux-based Maemo
operating system beloved by Nokia fans until iOS and Android killed it off in the 2010s. The
N770 was one of the first devices to fall into a new niche: with a 4" touchscreen and OMAP/ARM
SoC, it wasn't exactly a "computer" in the consumer sense. It was more like a peripheral,
something that you would connect to your computer in order to load it up with your favorite
MP3s. But it also ran a complete general-purpose operating system. The software was perfectly
capable of using peripherals itself, and MP3s were big when you were storing them on MMC.
Shouldn't you be able to connect your N770 to a USB storage device and nominate even more MP3s
as favorites?

Obviously Linux had mainline USB mass storage support in 2005, and by extension Maemo did. The
problem was USB itself. The most common use case for USB on the N770 was as a peripheral, and
so it featured a type-B device connector. It was not permitted to act as a host. In fact,
every PDA/tablet/smartphone type device with sophisticated enough software to support USB
peripherals would encounter the exact same problem. Fortunately, it was addressed by a
supplement to the USB 2.0 specification released in 2001.

The N770 did not follow the supplement. That makes it fun to talk about, both because it is
weird and because it is an illustrative example of the problems that need to be solved.

The N770 featured an unusual USB transceiver on its SoC, seemingly unique to Nokia and called
"Tahvo." The Tahvo controller exposed an interface (via sysfs in the Linux driver) that allowed
the system to toggle it between device mode (its normal configuration) and host mode. This
worked well enough with Maemo's user interface, but host mode had a major limitation. The N770
wouldn't provide power on the USB port; it didn't have the necessary electrical components.
Instead, a special adapter cable was needed to provide 5v power from an alternate source.

So there are several challenges for a USB device to operate as host or device:

• The USB controller needs a way to determine if it should behave in host or device mode.
Ideally, the user shouldn't have to think about this.

2



• The USB controller needs to be able to supply power when in host mode, and in most
practical situations also needs to accept power (e.g. for charging) when in device mode.

Note that "special cable" involved in host mode for the N770. You might think this was the
ugliest part of the situation. You're not wrong, but it's also not really the hack. For many
years to follow, the proper solution to this problem would also involve a special cable.

As I mentioned, since 2001 there has been a supplement USB specification called USB On-The-Go,
commonly referred to as USB OTG, perhaps because On-The-Go is an insufferably early '00s name.
It reminds me of, okay, here goes a full-on anecdote.

Anecdote

I attended an alternative middle school in Portland that is today known as the Sunnyside
Environmental School. I could tell any number of stories about the bizarre goings-on at this
school that you would scarcely believe, but it also had its merits. One of them, which I think
actually came from the broader school district, was a program in which eighth graders were
encouraged to "job shadow" someone in a profession they were interested in pursuing. By good
fortune, a friend's father was an electrical engineer employed at Intel's Jones Farm campus,
and agreed to be my host. I had actually been to Jones Farm a number of times on account of
various extracurricular programs (in that era, essentially every STEM program in the Pacific
Northwest operated on the largess of either Intel or Boeing, if not both). This was different,
though: this guy had a row of engraved brass patent awards lining his cubicle wall and showed
me through labs where technicians tinkered with prototype hardware. Foreshadowing a concerning
later trend in my career, though, the part that stuck with me most was the meetings. I
attended meetings, including one where this engineering team was reporting to leadership on
the status of a few of their projects.

I am no doubt primed to make this comparison by the mediocre movie I watched last night, but I
have to describe the experience as Wonka-esque. These EEs demonstrated a series of magical
hardware prototypes to some partners from another company. Each was more impressive than the
last. It felt like I was seeing the future in the making.

My host demonstrated his pet project, a bar that contained an array of microphones and used
DSP methods to compare the audio from each and directionalize the source of sounds. This could
be used for a sophisticated form of noise canceling in which sound coming from an off-axis
direction could be subtracted, leaving only the voice of the speaker. If this sounds sort of
unremarkable, that is perhaps a reflection of its success, as the same basic concept is now
implemented in just about every laptop on the market. Back then, when the N770 was a new
release, it was challenging to make work and my host explained that the software behind it
usually crashed before he finished the demo, and sometimes it turned the output into a high
pitched whine and he hadn't quite figured out why yet. I suppose that meeting was lucky.

But that's an aside. A long presentation, and then debate skeptical execs, revolved around a
new generation of ultramobile devices that Intel envisioned. One, which I got to handle a
prototype of, would eventually become the Intel Core Medical Tablet. It featured chunky,
colorful design that is clearly of the same vintage as the OLPC. It was durable enough to
stand on, which a lab technician demonstrated with delight (my host, I suspect tired of this
feat, picked up some sort of lab interface and dryly remarked that he could probably stand on
it too). The Core Medical Tablet shared another trait with the OLPC: the kind of failure that
leaves no impact on the world but a big footprint at recyclers. Years later, as an intern at
Free Geek, I would come across at least a dozen.

3



Another facet of this program, though, was the Mobile Metro. The Metro was a new category of
subnotebook, not just small but thin. A period article compares its 18mm profile to the
somewhat thinner Motorola Razr, another product with an outsize representation in the Free
Geek Thrift Store. Intel staff were confident that it would appeal to a new mobile workforce,
road warriors working from cars and coffee shops. The Mobile Metro featured SideShow, a small
e-ink display (in fact, I believe, a full Windows Mobile system) on the outside of a case that
could show notifications and media controls.

The Mobile Metro was developed around the same time as the Classmate PC, but seems to have
been even less successful. It was still in the conceptual stages when I heard of it. It was
announced, to great fanfare, in 2007. I don't think it ever went into production. It had
WiMax. It had inductive charging. It only had one USB port. It was, in retrospect, prescient
in many ways both good and bad.

The point of this anecdote, besides digging up middle school memories while attempting to keep
others well suppressed, is that the mid-2000s were an unsettled time in mobile computing. The
technology was starting to enable practical compact devices, but manufacturers weren't really
sure how people would use them. Some innovations were hits (thin form factors). Some were
absolute misses (SideShow). Some we got stuck with (not enough USB ports).

End of anecdote

As far as I can tell, USB OTG wasn't common on devices until it started to appear on Android
smartphones in the early 2010s. Android gained OTG support in 3.1 (codenamed Honeycomb, 2011),
and it quickly appeared in higher-end devices. Now OTG support seems nearly universal for
Android devices; I'm sure there are lower-end products where it doesn't work but I haven't yet
encountered one. Android OTG support is even admirably complete. If you have an Android phone,
amuse yourself sometime by plugging a hub into it, and then a keyboard and mouse. Android
support for desktop input peripherals is actually very good and operating mobile apps with an
MX Pro mouse is an entertaining and somewhat surreal experience. On the second smartphone I
owned, I hazily think a Samsung in 2012-2013, I used to take notes with a USB keyboard.

iOS doesn't seem to have sprouted user-exposed OTG support until the iPhone 12, although it
seems like earlier versions probably had hardware support that wasn't exposed by the OS. I
could be wrong about this; I can't find a straightforward answer in Apple documentation. The
Apple Community Forums seem to be... I'll just say "below average." iPads seem to have gotten
OTG support a lot earlier than the iPhone despite using the same connector, making the
situation rather confusing. This comports with my general understanding of iOS, though, from
working with bluetooth devices: Apple is very conservative about hardware peripheral support in
iOS, and so it's typical for iOS to be well behind Android in this regard for purely software
reasons. Ask me about how this has impacted the Point of Sale market. It's not positive.

But how does OTG work? Remember, USB specifies that hosts must have an A connector, and
devices a B connector. Most smartphones, besides Apple products and before USB-C, sported a
micro-B connector as expected. How OTG?

The OTG specification decouples, to some extent, the roles of A/B connector, power supply, and
host/device role. A device with USB OTG support should feature a type AB socket that
accommodates either an A or a B plug. Type AB is only defined for the mini and micro sizes,
typically used on portable devices. The A or B connectors are differentiated not only by the
shape of their shells (preventing a type-A plug being inserted into a B-only socket), but also
electrically. The observant among you may have noticed that mini and micro B sockets and plugs
feature five pins, while USB2.0 only uses four. This is the purpose of the fifth pin:

4



differentiation of type A and B plugs.

In a mini or micro type B plug, the fifth pin is floating (disconnected). In a mini or micro
type A plug, it is connected to the ground pin. When you insert a plug into a type AB socket,
the controller checks for connectivity between the fifth pin (called the ID pin) and the
ground. If connectivity is present, the controller knows that it must act as an OTG
A-device---it is on the "A" end of the connection. If there is no continuity, the more common
case, the controller will act as an OTG B-device, a plain old USB device [2].

The OTG A-device is always responsible for supplying 5v power (see exception in [2]). By
default, the A-device also acts as the host. This provides a basically complete solution for
the most common OTG use-case: connecting a peripheral like a flash drive to your phone. The
connector you plug into your phone identifies itself as an A connector via the ID pin, and
your phone thus knows that it must supply power and act as host. The flash drive doesn't need
to know anything about this, it has a B connection and acts as a device as usual. This simple
case only became confusing when you consider a few flash drives sold specifically for use with
phones that had a micro-A connector right on them. These were weird and I don't like them.

In the more common situation, though, you would use a dongle: a special cable. A typical OTG
cable, which were actually included in the package with enough Android phones of the era that
I have a couple in a drawer without having ever purchased one, provides a micro-A connector on
one end and a full-size A socket on the other. With this adapter, you can plug any USB device
into your phone with a standard USB cable.

Here's an odd case, though. What if you plug two OTG devices into each other? USB has always
had this sort of odd edge-case. Some of you may remember "USB link cables," which don't really
have a technical name but tend to get called Laplink cables after a popular vendor. Best Buy
and Circuit City used to be lousy with these things, mostly marketed to people who had bought
a new computer and wanted to transfer their files. A special USB cable had two A connectors,
which might create the appearance that it connected two hosts, but in fact the cable (usually
a chunky bit in the middle) acted as two devices to connect to two different hosts. The
details of how these actually worked varied from product to product, but the short version is
"it was proprietary." Most of them didn't work unless you found the software that came with
them, but there are some pseudo-standard controllers supported out of the box by Windows or
Linux. I would strongly suggest that you protect your mental state by not trying to use one.

OTG set out to address this problem more completely. First, it's important to understand that
this in no way poses an exception to the rule that a USB connection has an A end and a B end. A
USB cable you use to connect two phones together might, at first glance, appear to be B-B. But,
if you inspect closer, you will find that one end is mini or micro A, and the other is mini or
micro B. You may have to look close, the micro connectors in particular have a similar shell!

If you are anything like me, you are most likely to have encountered such a cable in the box
with a TI-84+. These calculators had a type AB connector and came with a micro A->B cable to
link two units. You might think, by extension, that the TI-84+ used USB OTG. The answer is
kind of! The USB implementation on the TI-84+ and TI-84+SE was very weird, and the OS didn't
support anything other than TIConnect. Eventually the TI-84+CE introduced a much more standard
USB controller, although I think support for any OTG peripheral still has to be hacked on to
the OS. TI has always been at the forefront of calculator networking, and it has always been
very weird and rarely used.

This solves part of the problem: it is clear, when you connect two phones, which should supply
power and which should handle enumeration. The A-device is, by default, in charge. There are
problems where this interacts with common USB devices types, though. One of the most common
uses of USB with phones is mass storage (and its evil twin MTP). USB mass storage has a very

5



strong sense of host and device at a logical level; the host can browse the devices files. When
connecting two smartphones, though, you might want to browse from either end. Another common
problem case here is that of the printer, or at least it would be if printer USB host support
was ever usable. If you plug a printer into a phone, you might want to browse the phone as
mass storage on the printer. Or you might want to use conventional USB printing to print a
document from the phone's interface. In fact you almost certainly want to do the latter,
because even with Android's extremely half-assed print spooler it's probably a lot more usable
than the file browser your printer vendor managed to offer on its 2" resistive touchscreen.

OTG adds Host Negotiation Protocol, or HNP, to help in this situation. HNP allows the devices
on a USB OTG connection to swap roles. While the A-device will always be the host when first
connected, HNP can reverse the logical roles on demand.

This all sounds great, so where does it fall apart? Well, the usual places. Android devices
often went a little off the script with their OTG implementations. First, the specification
did not require devices to be capable of powering the bus, and phones couldn't. Fortunately
that seems to have been a pretty short lived problem, only common in the first couple of
generations of OTG devices. This wasn't the only limitation of OTG implementations; I don't
have a good sense of scale but I've seen multiple reports that many OTG devices in the wild
didn't actually support HNP, they just determined a role when connected based on the ID pin
and could not change after that point.

Finally, and more insidiously, the whole thing about OTG devices having an AB connector didn't
go over as well as intended. We actually must admire TI for their rare dedication to standards
compliance. A lot of Android phones with OTG support had a micro-B connector only, and as a
result a lot of OTG adapters use a micro-B connector.

There's a reason this was common; since A and B plugs are electrically differentiable
regardless of the shape of the shell, the shell shape arguably doesn't matter. You could be a
heavy OTG user with such a noncompliant phone and adapter and never notice. The problem only
emerges when you get a (rare) standards-compliant OTG adapter or, probably more common, OTG
A-B cable. Despite being electrically compatible, the connector won't fit into your phone. Of
course this behavior feeds itself; as soon as devices with an improper B port were common,
manufacturers of cables were greatly discouraged from using the correct A connector.

The downside, conceptually, is that you could plug an OTG A connector (with a B-shaped shell)
into a device with no OTG support. In theory this could cause problems, in practice the
problems don't seem to have been common since both devices would think they were B devices and
(if standards compliant) not provide power. Essentially these improper OTG adapters create a
B-B cable. It's a similar problem to an A-A cable but, in practice, less severe. Like an
extension cord with two female ends. Home Depot might even help you make one of those.

While trying to figure out which iPhones had OTG support, I ran across an Apple Community
thread where someone helpfully replied "I haven't heard of OTG in over a decade." Well, it's
not a very helpful reply, but it's not exactly wrong either. No doubt the dearth of information
on iOS OTG is in part because no one ever really cared. Much like the HDMI-over-USB support
that a generation of Android phones included, OTG was an obscure feature. I'm not sure I have
ever, even once, seen a human being other than myself make use of OTG.

Besides, it was completely buried by USB-C.

The thing is that OTG is not gone at all, in fact, it's probably more popular than ever
before. There seems to be some confusion about how OTG has evolved with USB specifications. I
came across more than one article saying that USB 3.1 Dual Role replaced OTG. This assertion
is... confusing. It's not incorrect, but there's a good chance of it leading you int he wrong

6



direction.

Much of the confusion comes from the fact that Dual-Role doesn't mean anything that specific.
The term Dual-Role and various resulting acronyms like DRD and DRP have been applied to
multiple concepts over the life of USB. Some vendors say "static dual role" to refer to
devices that can be configured as either host or device (like the N770). Some vendors use dual
role to identify chipsets that detect role based on the ID pin but are not actually capable of
OTG protocols like HNP. Some articles use dual role to identify chipsets with OTG support.
Subjectively, I think the intent of the changes in USB 3.1 were mostly to formally adopt the
"dual role" term that was already the norm in informal use---and hopefully standardize the
meaning.

For USB-C connectors, it's more complicated. USB-C cables are symmetric, they do not identify
a host or device end in any way. Instead, the USB-C ports use resistance values to indicate
their type. When either end indicates that it is only capable of the device role, the
situation is simple, behaving basically the same way that OTG did: the host detects that the
other end is a device and behaves as the host.

When both ends support the host role, things work differently: the Dual Role feature of USB-C
comes into play. The actual implementation is reasonably simple; a dual-role USB-C controller
will attempt to set up a connection both ways and go with whichever succeeds. There are some
minor complications on top of this, for example, the controller can be configured with a
"preference" for host or device role. This means that when you plug your phone into your
computer via USB-C, the computer will assume the host role, because although it's capable of
either the phone is configured with a preference for the device role. That matches consumer
expectations. When both devices are capable of dual roles and neither specifies a preference,
the outcome is random. This scenario is interesting but not all that common in practice.

The detection of host or device role by USB-C is based on the CC pins, basically a more
flexible version of OTG's ID pin. There's another important difference between the behavior of
USB-C and A/B: USB-C interfaces provide no power until they detect, via the CC pins, that the
other device expects it. This is an important ingredient to mitigate the problem with A-A
cables, that both devices will attempt to power the same bus.

The USB-C approach of using CC pins and having dual role controllers attempt one or the other
at their preference is, for the most part, a much more elegant approach. There are a couple of
oddities. First, in practice cables from C to A or B connectors are extremely common. These
cables must provide the appropriate values on the CC pins to allow the USB-C controller to
correctly determine its role, both for data and power delivery.

Second, what about role reversal? For type A and B connectors, this is achieved via HNP, but
HNP is not supported on USB-C. Application notes from several USB controller vendors explain
that, oddly enough, the only way to perform role reversal with USB-C is to implement USB Power
Delivery (PD) and use the PD negotiation protocol to change the source of power. In other
words, while OTG allows reversing host and device roles independently of the bus power source,
USB-C does not. The end supplying power is always the host end. This apparent limitation
probably isn't that big of a deal, considering that the role reversal feature of OTG was
reportedly seldom implemented.

That's a bit of a look into what happens when you plug two USB hosts into each other. Are you
confused? Yeah, I'm a little confused too. The details vary, and a lot more based on the
capabilities of the individual devices rather than the USB version in use. This has been the
malaise of USB for a solid decade now, at least: the specification has become so expansive,
with so many non-mandatory features, that it's a crapshoot what capabilities any given USB
port actually has. The fact that USB-C supports a bevy of alternate modes like Thunderbolt and

7



HDMI only adds further confusion.

I sort of miss when the problem was just inappropriate micro-B connectors. Nonetheless, USB-C
dual role support seems ubiquitous in modern smartphones, and that's the only place any of this
ever really mattered. Most embedded devices still seem to prefer to just provide two USB ports:
a host port and a device port. And no one ever uses the USB host support on their printer. It's
absurd, no one ever would. Have you seen what HP thinks is a decent file browser? Good lord.

[1] My first smartphone was the HTC Thunderbolt. No one, not even me, will speak of that thing
with nostalgia. It was pretty cool owning one of the first LTE devices on the market, though.
There was no contention at all in areas with LTE service and I was getting 75+Mbps mobile
tethering in 2011. Then everyone else had LTE too and the good times ended.

[2] There are actually several additional states defined by fixed resistances that tell the
controller that it is the A-device but power will be supplied by the bus. These states were
intended for Y-cables that allowed you to charge your phone from an external charger while
using OTG. In this case neither device supplies power, the external charger does. The details
of how this works are quite straightforward but will be confusing to keep adding as an
exception, so I'm going to pretend the whole feature doesn't exist.

8


	computers are bad
	2024-01-06 usb on the go
	Anecdote
	End of anecdote


