Airfone
We've talked before about carphones, and certainly one of the only ways to make phones even more interesting is to put them in modes of transportation. Installing telephones in cars made a lot of sense when radiotelephones were big and required a lot of power; and they faded away as cellphones became small enough to have a carphone even outside of your car.
There is one mode of transportation where the personal cellphone is pretty useless, though: air travel. Most readers are probably well aware that the use of cellular networks while aboard an airliner is prohibited by FCC regulations. There are a lot of urban legends and popular misconceptions about this rule, and fully explaining it would probably require its own article. The short version is that it has to do with the way cellular devices are certified and cellular networks are planned. The technical problems are not impossible to overcome, but honestly, there hasn't been a lot of pressure to make changes. One line of argument that used to make an appearance in cellphones-on-airplanes discourse is the idea that airlines or the telecom industry supported the cellphone ban because it created a captive market for in-flight telephone services.
Wait, in-flight telephone services?
That theory has never had much to back it up, but with the benefit of hindsight we can soundly rule it out: not only has the rule persisted well past the decline and disappearance of in-flight telephones, in-flight telephones were never commercially successful to begin with.
Let's start with John Goeken. A 1984 Washington Post article tells us that "Goeken is what is called, predictably enough, an 'idea man.'" Being the "idea person" must not have had quite the same connotations back then, it was a good time for Goeken. In the 1960s, conversations with customers at his two-way radio shop near Chicago gave him an idea for a repeater network to allow truckers to reach their company offices via CB radio. This was the first falling domino in a series that lead to the founding of MCI and the end of AT&T's long-distance monopoly. Goeken seems to have been the type who grew bored with success, and he left MCI to take on a series of new ventures. These included an emergency medicine messaging service, electrically illuminated high-viz clothing, and a system called the Mercury Network that built much of the inertia behind the surprisingly advanced computerization of florists [1].
"Goeken's ideas have a way of turning into dollars, millions of them," the Washington Post continued. That was certainly true of MCI, but every ideas guy had their misses. One of the impressive things about Goeken was his ability to execute with speed and determination, though, so even his failures left their mark. This was especially true of one of his ideas that, in the abstract, seemed so solid: what if there were payphones on commercial flights?
Goeken's experience with MCI and two-way radios proved valuable, and starting in the mid-1970s he developed prototype air-ground radiotelephones. In its first iteration, "Airfone" consisted of a base unit installed on an aircraft bulkhead that accepted a credit card and released a cordless phone. When the phone was returned to the base station, the credit card was returned to the customer. This equipment was simple enough, but it would require an extensive ground network to connect callers to the telephone system. The infrastructure part of the scheme fell into place when long-distance communications giant Western Union signed on with Goeken Communications to launch a 50/50 joint venture under the name Airfone, Inc.
Airfone was not the first to attempt air-ground telephony---AT&T had pursued the same concept in the 1970s, but abandoned it after resistance from the FCC (unconvinced the need was great enough to justify frequency allocations) and the airline industry (which had formed a pact, blessed by the government, that prohibited the installation of telephones on aircraft until such time as a mature technology was available to all airlines). Goeken's hard-headed attitude, exemplified in the six-year legal battle he fought against AT&T to create MCI, must have helped to defeat this resistance.
Goeken brought technical advances, as well. By 1980, there actually was an air-ground radiotelephone service in general use. The "General Aviation Air-Ground Radiotelephone Service" allocated 12 channels (of duplex pairs) for radiotelephony from general aviation aircraft to the ground, and a company called Wulfsberg had found great success selling equipment for this service under the FliteFone name. Wulfsberg FliteFones were common equipment on business aircraft, where they let executives shout "buy" and "sell" from the air. Goeken referred to this service as evidence of the concept's appeal, but it was inherently limited by the 12 allocated channels.
General Aviation Air-Ground Radiotelephone Service, which I will call AGRAS (this is confusing in a way I will discuss shortly), operated at about 450MHz. This UHF band is decidedly line-of-sight, but airplanes are very high up and thus can see a very long ways. The reception radius of an AGRAS transmission, used by the FCC for planning purposes, was 220 miles. This required assigning specific channels to specific cities, and there the limits became quite severe. Albuquerque had exactly one AGRAS channel available. New York City got three. Miami, a busy aviation area but no doubt benefiting from its relative geographical isolation, scored a record-setting four AGRAS channels. That meant AGRAS could only handle four simultaneous calls within a large region... if you were lucky enough for that to be the Miami region; otherwise capacity was even more limited.
Back in the 1970s, AT&T had figured that in-flight telephones would be very popular. In a somewhat hand-wavy economic analysis, they figured that about a million people flew in the air on a given day, and about a third of them would want to make telephone calls. That's over 300,000 calls a day, clearly more than the limited AGRAS channels could handle... leading to the FCC's objection that a great deal of spectrum would have to be allocated to make in-flight telephony work.
Goeken had a better idea: single-sideband. SSB is a radio modulation technique that allows a radio transmission to fit within a very narrow bandwidth (basically by suppressing half of the signal envelope), at the cost of a somewhat more fiddly tuning process for reception. SSB was mostly used down in the HF bands, where the low frequencies meant that bandwidth was acutely limited. Up in the UHF world, bandwidth seemed so plentiful that there was little need for careful modulation techniques... until Goeken found himself asking the FCC for 10 blocks of 29 channels each, a lavish request that wouldn't really fit anywhere in the popular UHF spectrum. The use of UHF SSB, pioneered by Airfone, allowed far more efficient use of the allocation.
In 1983, the FCC held hearings on Airfone's request for an experimental license to operate their SSB air-ground radiotelephone system in two allocations (separate air-ground and ground-air ranges) around 850MHz and 895MHz. The total spectrum allocated was about 1.5MHz in each of the two directions. The FCC assented and issued the experimental license in 1984, and Airfone was in business.
Airfone initially planned 52 ground stations for the system, although I'm not sure how many were ultimately built---certainly 37 were in progress in 1984, at a cost of about $50 million. By 1987, the network had reportedly grown to 68. Airfone launched on six national airlines (a true sign of how much airline consolidation has happened in recent decades---there were six national airlines?), typically with four cordless payphones on a 727 or similar aircraft. The airlines received a commission on the calling rates, and Airfone installed the equipment at their own expense. Still, it was expected to be profitable... Airfone projected that 20-30% of passengers would have calls to make.
I wish I could share more detail on these ground stations, in part because I assume there was at least some reuse of existing Western Union facilities (WU operated a microwave network at the time and had even dabbled in cellular service in the 1980s). I can't find much info, though. The antennas for the 800MHz band would have been quite small, but the 1980s multiplexing and control equipment probably took a fare share of floorspace.
Airfone was off to a strong start, at least in terms of installation base and press coverage. I can't say now how many users it actually had, but things looked good enough that in 1986 Western Union sold their share of the company to GTE. Within a couple of years, Goeken sold his share to GTE as well, reportedly as a result of disagreements with GTE's business strategy.
Airfone's SSB innovation was actually quite significant. At the same time, in the 1980s, a competitor called Skytel was trying to get a similar idea off the ground with the existing AGRAS allocation. It doesn't seem to have gone anywhere, I don't think the FCC ever approved it. Despite an obvious concept, Airfone pretty much launched as a monopoly, operating under an experimental license that named them alone. Unsurprisingly there was some upset over this apparent show of favoritism by the FCC, including from AT&T, which vigorously opposed the experimental license.
As it happened, the situation would be resolved by going the other way: in 1990, the FCC established the "commercial aviation air-ground service" which normalized the 800 MHz spectrum and made licenses available to other operators. That was six years after Airfone started their build-out, though, giving them a head start that severely limited competition.
Still, AT&T was back. AT&T introduced a competing service called AirOne. AirOne was never as widely installed as Airfone but did score some customers including Southwest Airlines, which only briefly installed AirOne handsets on their fleet. "Only briefly" describes most aspects of AirOne, but we'll get to that in a moment.
The suddenly competitive market probably gave GTE Airfone reason to innovate, and besides, a lot had changed in communications technology since Airfone was designed. One of Airfone's biggest limitations was its lack of true roaming: an Airfone call could only last as long as the aircraft was within range of the same ground station. Airfone called this "30 minutes," but you can imagine that people sometimes started their call near the end of this window, and the problem was reportedly much worse. Dropped calls were common, adding insult to the injury that Airfone was decidedly expensive. GTE moved towards digital technology and automation.
1991 saw the launch of Airfone GenStar, which used QAM digital modulation to achieve better call quality and tighter utilization within the existing bandwidth. Further, a new computerized network allowed calls to be handed off from one ground station to another. Capitalizing on the new capacity and reliability, the aircraft equipment was upgraded as well. The payphone like cordless stations were gone, replaced by handsets installed in seatbacks. First class cabins often got a dedicated handset for every seat, economy might have one handset on each side of a row. The new handsets offered RJ11 jacks, allowing the use of laptop modems while in-flight. Truly, it was the future.
During the 1990s, satellites were added to the Airfone network as well, improving coverage generally and making telephone calls possible on overseas flights. Of course, the rise of satellite communications also sowed the seeds of Airfone's demise. A company called Aircell, which started out using the cellular network to connect calls to aircraft, rebranded to Gogo and pivoted to satellite-based telephone services. By the late '90s, they were taking market share from Airfone, a trend that would only continue.
Besides, for all of its fanfare, Airfone was not exactly a smash hit. Rates were very high, $5 a minute in the late '90s, giving Airfone a reputation as a ripoff that must have cut a great deal into that "20-30% of fliers" they hoped to serve. With the rise of cellphones, many preferred to wait until the aircraft was on the ground to use their own cellphone at a much lower rate. GTE does not seem to have released much in the way of numbers for Airfone, but it probably wasn't making them rich.
Goeken, returning to the industry, inadvertently proved this point. He aggressively lobbied the FCC to issue competitive licenses, and ultimately succeeded. His second company in the space, In-Flight Phone Inc., became one of the new competitors to his old company. In-Flight Phone did not last for long. Neither did AT&T AirOne. A 2005 FCC ruling paints a grim picture:
Current 800 MHz Air-Ground Radiotelephone Service rules contemplate six competing licensees providing voice and low-speed data services. Six entities were originally licensed under these rules, which required all systems to conform to detailed technical specifications to enable shared use of the air-ground channels. Only three of the six licensees built systems and provided service, and two of those failed for business reasons.
In 2002, AT&T pulled out, and Airfone was the only in-flight phone left. By then, GTE had become Verizon, and GTE Airfone was Verizon Airfone. Far from a third of passengers, the CEO of Airfone admitted in an interview that a typical flight only saw 2-3 phone calls. Considering the minimum five-figure capital investment in each aircraft, it's hard to imagine that Airfone was profitable---even at $5 minute.
Airfone more or less faded into obscurity, but not without a detour into the press via the events of 9/11. Flight 93, which crashed in Pennsylvania, was equipped with Airfone and passengers made numerous calls. Many of the events on board this aircraft were reconstructed with the assistance of Airfone records, and Claircom (the name of the operator of AT&T AirOne, which never seems to have been well marketed) also produced records related to other aircraft involved in the attacks. Most notably, flight 93 passenger Todd Beamer had a series of lengthy calls with Airfone operator Lisa Jefferson, through which he relayed many of the events taking place on the plane in real time. During these calls, Beamer seems to have coordinated the effort by passengers to retake control of the plane. The significance of Airfone and Claircom records to 9/11 investigations is such that 9/11 conspiracy theories may be one of the most enduring legacies of Claircom especially.
In an odd acknowledgment of their aggressive pricing, Airfone decided not to bill for any calls made on 9/11, and temporarily introduced steep discounts (to $0.99 a minute) in the weeks after. This rather meager show of generosity did little to reverse the company's fortunes, though, and it was already well into a backslide.
In 2006, the FCC auctioned the majority of Airfone's spectrum to new users. The poor utilization of Airfone was a factor in the decision, as well as Airfone's relative lack of innovation compared to newer cellular and satellite systems. In fact, a large portion of the bandwidth was purchased by Gogo, who years later would use to to deliver in-flight WiFi. Another portion went to a subsidiary of JetBlue that provided in-flight television. Verizon announced the end of Airfone in 2006, pending an acquisition by JetBlue, and while the acquisition did complete JetBlue does not seem to have continued Airfone's passenger airline service. A few years later, Gogo bought out JetBlue's communications branch, making them the new monopoly in 800MHz air ground radiotelephony. Gogo only offered telephone service for general aviation aircraft; passenger aircraft telephones had gone the way of the carphone.
It's interesting to contrast the fate of Airfone to to its sibling, AGRAS. Depending on who you ask, AGRAS refers to the radio service or to the Air Ground Radiotelephone Automated Service operated by Mid-America Computer Corporation. What an incredible set of names. This was a situation a bit like ARINC, the semi-private company that for some time held a monopoly on aviation radio services. MACC had a practical monopoly on general aviation telephone service throughout the US, by operating the billing system for calls. MACC still exists today as a vendor of telecom billing software and this always seems to have been their focus---while I'm not sure, I don't believe that MACC ever operated ground stations, instead distributing rate payments to private companies that operated a handful of ground stations each. Unfortunately the history of this service is quite obscure and I'm not sure how MACC came to operate the system, but I couldn't resist the urge to mention the Mid-America Computer Corporation.
AGRAS probably didn't make anyone rich, but it seems to have been generally successful. Wulfsberg FliteFones operating on the AGRAS network gave way to Gogo's business aviation phone service, itself a direct descendent of Airfone technology.
The former AGRAS allocation at 450MHz somehow came under the control of a company called AURA Network Systems, which for some years has used a temporary FCC waiver of AGRAS rules to operate data services. This year, the FCC began rulemaking to formally reallocate the 450MHz air ground allocation to data services for Advanced Air Mobility, a catch-all term for UAS and air taxi services that everyone expects to radically change the airspace system in coming years. New uses of the band will include command and control for long-range UAS, clearance and collision avoidance for air taxis, and ground and air-based "see and avoid" communications for UAS. This pattern, of issuing a temporary authority to one company and later performing rulemaking to allow other companies to enter, is not unusual for the FCC but does make an interesting recurring theme in aviation radio. It's typical for no real competition to occur, the incumbent provider having been given such a big advantage.
When reading about these legacy services, it's always interesting to look at the licenses. ULS has only nine licenses on record for the original 800 MHz air ground service, all expired and originally issued to Airfone (under both GTE and Verizon names), Claircom (operating company for AT&T AirOne), and Skyway Aircraft---this one an oddity, a Florida-based company that seems to have planned to introduce in-flight WiFi but not gotten all the way there.
Later rulemaking to open up the 800MHz allocation to more users created a technically separate radio service with two active licenses, both held by AC BidCo. This is an intriguing mystery until you discover that AC BidCo is obviously a front company for Gogo, something they make no effort to hide---the legalities of FCC bidding processes are such that it's very common to use shell companies to hold FCC licenses, and we could speculate that AC BidCo is the Aircraft Communications Bidding Company, created by Gogo for the purpose of the 2006-2008 auctions. These two licenses are active for the former Airfone band, and Gogo reportedly continues to use some of the original Airfone ground stations.
Gogo's air-ground network, which operates at 800MHz as well as in a 3GHz band allocated specifically to Gogo, was originally based on CDMA cellular technology. The ground stations were essentially cellular stations pointed upwards. It's not clear to me if this CDMA-derived system is still in use, but Gogo relies much more heavily on their Ku-band satellite network today.
The 450MHz licenses are fascinating. AURA is the only company to hold current licenses, but the 246 reveal the scale of the AGRAS business. Airground of Idaho, Inc., until 1999 held a license for an AGRAS ground station on Brundage Mountain McCall, Idaho. The Arlington Telephone Company, until a 2004 cancellation, held a license for an AGRAS ground station atop their small telephone exchange in Arlington, Nebraska. AGRAS ground stations seem to have been a cottage industry, with multiple licenses to small rural telephone companies and even sole proprietorships. Some of the ground stations appear to have been the roofs of strip mall two-way radio installers. In another life, maybe I would be putting a 450MHz antenna on my roof to make a few dollars.
Still, there were incumbents: numerous licenses belonged to SkyTel, which after the decline of AGRAS seems to have refocused on paging and, then, gone the same direction as most paging companies: an eternal twilight as American Messaging ("The Dependable Choice"), promoting innovation in the form of longer-range restaurant coaster pagers. In another life, I'd probably be doing that too.
[1] This is probably a topic for a future article, but the Mercury Network was a computerized system that Goeken built for a company called Florist's Telegraph Delivery (FTD). It was an evolution of FTD's telegraph system that allowed a florist in one city to place an order to be delivered by by a florist in another city, thus enabling the long-distance gifting of flowers. There were multiple such networks and they had an enduring influence on the florist industry and broader business telecommunications.