white alice
When we last talked about Troposcatter, it was Pole Vault. Pole Vault was the first troposcatter communications network, on the east coast of Canada. It would not be alone for long. By the time the first Pole Vault stations were complete, work was already underway on a similar network for Alaska: the White Alice Communication System, WACS.
Alaska has long posed a challenge for communications. In the 1860s, Western Union wanted to extend their telegraph network from the United States into Europe. Although the technology would be demonstrated shortly after, undersea telegraph cables were still notional and it seemed that a route that minimized the ocean crossing would be preferable---of course, that route maximized the length on land, stretching through present-day Alaska and Siberia on each side of the Bering Strait. This task proved more formidable than Western Union had imagined, and the first transatlantic telegraph cable (on a much further south crossing) was completed before the arctic segments of the overland route. The "Western Union Telegraph Expedition" abandoned its work, leaving a telegraph line well into British Columbia that would serve as one of the principle communications assets in the region for decades after.
This ill-fated telegraph line failed to link San Francisco to Moscow, but its aftermath included a much larger impact on Russian interests in North America: the purchase of Alaska in 1867. Shortly after, the US military began its expansion into the new frontier. The Army Signal Corps, mostly to fulfill its function in observing the weather, built and staffed small installations that stretched further and further west. Later, in the 1890s, a gold rush brought a sudden influx of American settlers to Alaska's rugged terrain. The sudden economic importance of Klondike, and the rather colorful personalities of the prospectors looking to exploit it, created a much larger need for military presence. Fortuitously, many of the forts present had been built by the Signal Corps, which had already started on lines of communication. Construction was difficult, though, and without Alaskan communications as major priority there was only minimal coverage.
Things changed in 1900, when Congress appropriated a substantial budget to the Washington-Alaska Military Cable and Telegraph System. The Signal Corps set on Alaska like, well, like an army, and extensive telegraph and later telephone lines were built to link the various military outposts. Later renamed the Alaska Communications System, these cables brought the first telecommunication to much of Alaska. The arrival of the telegraph was quite revolutionary for remote towns, who could now receive news in real-time that had previously been delayed by as much as a year [1]. Telegraphy was important to civilians as well, something that Congress had anticipated: The original act authorizing the Alaska Communications System dictated that it would carry commercial traffic as well. The military had an unusual role in Alaska, and one aspect of it was telecommunications provider.
In 1925, an outbreak of diphtheria began to claim the lives of children in Nome, a town in far western Alaska on the Seward Peninsula. The daring winter delivery of antidiphtheria serum by dog sled is widely remembered due to its tangential connection to the Iditarod, but there were two sides of the "serum run." The message from Nome's sole doctor requesting the urgent shipment was transmitted from Nome to the Public Health Service in DC over the Alaska Communications System. It gives us some perspective on the importance of the telegraph in Alaska that the 600 mile route to Nome took five days and many feats of heroism---but at the same time could be crossed instantaneously by telegrams.
The Alaska Communications System included some use of radio from the beginning. A pair of HF radio stations specifically handled traffic for Nome, covering a 100-mile stretch too difficult for even the intrepid Signal Corps. While not a totally new technology to the military, radio was quite new to the telegraph business, and the ACS to Nome was probably the first commercial radiotelegraph system on the continent. By the 1930s, the condition of the Alaskan telegraph cables had decayed while demand for telephony had increased. Much of ACS was upgraded and modernized to medium-frequency radiotelephone links. In towns small and large, even in Anchorage itself, the sole telephone connection to the contiguous United States was an ACS telephone installed in the general store.
Alaskan communications became an even greater focus of the military with the onset of the Second World War. A few weeks after Pearl Harbor, the Japanese attacked Fort Mears in the Aleutian Islands. Fort Mears had no telecommunications connections, so despite the proximity of other airbases support was slow to come. The lack of a telegraph or telephone line contributed to 43 deaths and focused attention on the ACS. By 1944, the Army Signal Corps had a workforce of 2,000 dedicated to Alaska.
WWII brought more than one kind of attention to Alaska. Several Japanese assaults on the Aleutian islands represented the largest threats to American soil outside of Pearl Harbor, showing both Alaska's vulnerability and the strategic importance given to it by its relative proximity to Eurasia. WWII ended but, in 1949, the USSR demonstrated an atomic weapon. A combination of Soviet expansionism and the new specter of nuclear war turned military planners towards air defense. Like the Canadian Maritimes in the East, Alaska covered a huge swath of the airspace through which Soviet bombers might approach the US. Alaska was, once again, a battleground.
The early Cold War military buildup of Alaska was particularly heavy on air defense. During the late '40s and early '50s, more than a dozen new radar and control sites were built. The doctrine of ground-controlled interception requires real-time communication between radar centers, stressing the limited number of voice channels available on the ACS. As early as 1948, the Signal Corps had begun experiments to choose an upgrade path. Canadian early-warning radar networks, including the Distant Early Warning Line, were on the drawing board and would require many communications channels in particularly remote parts of Alaska.
Initially, point-to-point microwave was used in relatively favorable terrain (where the construction of relay stations about every 50 miles was practical). For the more difficult segments, the Signal Corps found that VHF radio could provide useful communications at ranges over 100 miles. VHF radiotelephones were installed at air defense radar stations, but there was a big problem: the airspace surveillance radar of the 1950s also operated in the VHF band, and caused so much interference with the radiotelephones that they were difficult to use. The radar stations were probably the most important users of the network, so VHF would have to be abandoned.
In 1954, a military study group was formed to evaluate options for the ACS. That group, in turn, requested a proposal from AT&T. Bell Laboratories had been involved in the design and evaluation of Pole Vault, the first sites of which had been completed two years before, so they naturally positioned troposcatter as the best option.
It is worth mentioning the unusual relationship AT&T had with Alaska, or rather, the lack of one. While the Bell System enjoyed a monopoly on telephony in most of the United States [2], they had never expanded into Alaska. Alaska was only a territory, after all, and a very sparsely populated one at that. The paucity of long-distance leads to or from Alaska (only one connected to Anchorage, for example) limited the potential for integration of Alaska into the broader Bell System anyway. Long-distance telecommunications in Alaska were a military project, and AT&T was involved only as a vendor.
Because of the high cost of troposcatter stations, proven during Pole Vault construction, a hybrid was proposed: microwave stations could be spaced every 50 miles along the road network, while troposcatter would cover the long stretches without roads.
In 1955, the Signal Corps awarded Western Electric a contract for the White Alice Communications System. The Corps of Engineers surveyed the locations of 31 sites, verifying each by constructing a temporary antenna tower. The Corps of Engineers led construction of the first 11 sites, and the final 20 were built on contract by Western Electric itself. All sites used radio equipment furnished by Western Electric and were built to Western Electric designs.
Construction was far from straightforward. Difficult conditions delayed completion of the original network until 1959, two years later than intended. A much larger issue, though, was the budget. The original WACS was expected to cost $38 million. By the time the first 31 sites were complete, the bill totaled $113 million---equivalent to over a billion dollars today. Western Electric had underestimated not only the complexity of the sites but the difficulty of their construction. A WECo report read:
On numerous occasions, the men were forced to surrender before the onslaught of cold, wind and snow and were immobilized for days, even weeks . This ordeal of waiting was of times made doubly galling by the knowledge that supplies and parts needed for the job were only a few miles distant but inaccessible because the white wall of winter had become impenetrable
WACS initial capability included 31 stations, of which 22 were troposcatter and the remainder only microwave (using Western Electric's TD-2). A few stations were equipped with both troposcatter and microwave, serving as relays between the two carriers.
In 1958, construction started on the Ballistic Missile Early Warning System or BMEWS. BMEWS was an over-the-horizon radar system intended to provide early warning of a Soviet attack. BMEWS would provide as little as 15 minutes warning, requiring that alerts reach NORAD in Colorado as quickly as possible. One BMEWS set was installed in Greenland, where the Pole Vault system was expanded to provide communications. Similarly, the BMEWS set at Clear Missile Early Warning Station in central Alaska relied on White Alice. Planners were concerned about the ability of the Soviet Union to suppress an alert by destroying infrastructure, so two redundant chains of microwave sites were added to White Alice. One stretched from Clear to Ketchikan where it connected to an undersea cable to Seattle. The other went east, towards Canada, where it met existing telephone cables on the Alaska Highway.
A further expansion of White Alice started the next year, in 1959. Troposcatter sites were extended through the Aleutian islands in "Project Stretchout" to serve new DEW Line stations. During the 1960s, existing WACS sites were expanded and new antennas were installed at Air Force installations. These were generally microwave links connecting the airbases to existing troposcatter stations.
In total, WACS reached 71 sites. Four large sites served as key switching points with multiple radio links and telephone exchanges. Pedro Dome, for example, had a 15,000 square foot communications building with dormitories, a power plant, and extensive equipment rooms. Support facilities included a vehicle maintenance building, storage warehouse, and extensive fuel tanks. A few WACS sites even had tramways for access between the "lower camp" (where equipment and personnel were housed) and the "upper camp" (where the antennas were located)... although they apparently did not fare well in the Alaskan conditions.
While Western Electric had initially planned for six people and 25 KW of power at each station, the final requirements were typically 20 people and 120-180 KW of generator capacity. Some sites stored over half a million gallons of fuel---conditions often meant that resupply was only possible during the summer.
Besides troposcatter and microwave radios, the equipment included tandem telephone exchanges. These are described in a couple of documents as "ATSS-4A," ATSS standing for Alaska Telephone Switching System. Based on the naming and some circumstantial evidence, I believe these were Western Electric 4A crossbar exchanges. They were later incorporated into AUTOVON, but also handled commercial long-distance traffic between Alaskan towns.
With troposcatter comes large antennas, and depending on connection lengths, WACS troposcatter antennas ranged from 30' dishes to 120' "billboard" antennas similar to those seen at Pole Vault sites. The larger antennas handled up to 50kW of transmit power. Some 60' and 120' antennas included their own fuel tanks and steam plants that heated the antennas through winter to minimize snow accumulation.
Nearly all of the equipment used by WACS was manufactured by Western Electric, with a lot of reuse of standard telephone equipment. For example, muxing on the troposcatter links used standard K-carrier (originally for telephone cables) and L-carrier (originally for coaxial cables). Troposcatter links operated at about 900 MHz with a wide bandwidth, and carrier two L-carrier supergroups (60 channels) and one K-carrier (12 channels) for a nominal capacity of 132 channels, although most stations did not have fully-populated L-carrier groups so actual capacity varied based on need. This was standard telephone carrier equipment in widespread use on the long-distance network, but some output modifications were made to suit the radio application.
The exception to the Western Electric rule was the radio sets themselves. They were manufactured by Radio Engineering Laboratories, the same company that built the radios for Pole Vault. REL pulled out all of the tricks they had developed for Pole Vault, and the longer WACS links used two antennas at different positions for space diversity. Each antenna had two feed horns, of orthoganal polarization, matching similar dual-transmitters for further diversity. REL equipment selected the best signal of the four available receiver options.
WACS represented an enormous improvement in Alaskan communications. The entire system was multi-channel with redundancy in many key parts of the network. Outside of the larger cities, WACS often brought the first usable long-distance telephone service. Even in Anchorage, WACS provided the only multi-channel connection. Despite these achievements, WACS was set for much the same fate as other troposcatter systems: obsolescence after the invention of communications satellites.
The experimental satellites Telstar 1 and 2 launched in the early 1960s, and the military began a shift towards satellite communications shortly after. Besides, the formidable cost of WACS had become a political issue. Maintenance of the system overran estimates by just as much as construction, and placing this cost on taxpayers was controversial since much of the traffic carried by the system consisted of regular commercial telephone calls. Besides, a general reticence to allocate money to WACS had lead to a general decay of the system. WACS capacity was insufficient for the rapidly increasing long-distance telephone traffic of the '60s, and due to decreased maintenance funding reliability was beginning to decline.
The retirement of a Cold War communications system is not unusual, but the particular fate of WACS is. It entered a long second life.
After acting as the sole long-distance provider for 60 years, the military began its retreat. In 1969, Congress passed the Alaska Communications Disposal Act. It called for complete divestment of the Alaska Communications System and WACS, to a private owner determined by a bidding process. Several large independent communications companies bid, but the winner was RCA. Committing to a $28.5 million purchase price followed by $30 million in upgrades, RCA reorganized the Alaska Communications System as RCA Alascom.
Transfer of the many ACS assets from the military to RCA took 13 years, involving both outright transfer of property and complex lease agreements on sites colocated with military installations. RCA's interest in Alaskan communications was closely connected to the coming satellite revolution: RCA had just built the Bartlett Earth Station, the first satellite ground station in Alaska. While Bartlett was originally an ACS asset owned by the Signal Corps, it became just the first of multiple ground stations that RCA would build for Alascom. Several of the new ground stations were colocated with WACS sites, establishing satellite as an alternative to the troposcatter links.
Alascom appears to have been the first domestic satellite voice network in commercial use, initially relying on a Canadian communications satellite [3]. In 1974, SATCOM 1 and 2 launched. These were not the first commercial communications satellites, but they represented a significant increase in capacity over previous commercial designs and are sometimes thought of as the true beginning of the satellite communications era. Both were built and owned by RCA, and Alascom took advantage of the new transponders.
At the same time, Alascom launched a modernization effort. 22 of the former WACS stations were converted to satellite ground stations, a project that took much of the '70s as Alascom struggled with the same conditions that had made WACS so challenging to begin with. Modernization also included the installation of DMS-10 telephone switches and conversion of some connections to digital.
A series of regulatory and business changes in the 1970s lead RCA to step away from the domestic communications industry. In 1979, Alascom sold to Pacific Power and Light, now for $200 million and $90 million in debt. PP&L continued on much the same trajectory, expanding the Alascom system to over 200 ground stations and launching the satellite Aurora I---the first of a small series of satellites that gave Alaska the distinction of being the only state with its own satellite communications network. For much of the '70s to the '00s, large parts of Alaska relied on satellite relay for calls between towns.
In a slight twist of irony considering its long lack of interest in the state, AT&T purchased parts of Alascom from PP&L in 1995, forming AT&T Alascom which has faded away as an independent brand. Other parts of the former ACS network, generally non-toll (or non-long-distance) operations, were split off into then PP&L subsidiary CenturyTel. While CenturyTel has since merged into CenturyLink, the Alaskan assets were first sold to Alaska Communications. Alaska Communications considers itself the successor of the ACS heritage, giving them a claim to over 100 years of communications history.
As electronics technology has continued to improve, penetration of microwave relays into inland Alaska has increased. Fewer towns rely on satellite today than in the 1970s, and the half-second latency to geosynchronous orbit is probably not missed. Alaska communications have also become more competitive, with long-distance connectivity available from General Communications (GCI) as well as AT&T and Alaska Communications.
Still, the legacy of Alaska's complex and expensive long-distance infrastructure still echoes in our telephone bills. State and federal regulators have allowed for extra fees on telephone service in Alaska and calls into Alaska, both intended to offset the high cost of infrastructure. Alaska is generally the most expensive long-distance calling destination in the United States, even when considering the territories.
But what of White Alice?
The history of the Alaska Communications System's transition to private ownership is complex and not especially well documented. While RCA's winning bid following the Alaska Communications Disposal Act set the big picture, the actual details of the transition were established by many individual negotiations spanning over a decade. Depending on the station, WACS troposcatter sites generally conveyed to RCA in 1973 or 1974. Some, colocated with active military installations, were leased rather than included in the sale. RCA generally decommissioned each WACS site once a satellite ground station was ready to replace it, either on-site or nearby.
For some WACS sites, this meant the troposcatter equipment was shut down in 1973. Others remained in use later. The Boswell Bay troposcatter station seems to have been the last turned down, in 1985. The 1980s were decidedly the end of WACS. Alascom's sale to PP&L cemented the plan to shut down all troposcatter operations, and the 1980 Comprehensive Environmental Response, Compensation, and Liability Act lead to the establishment of the Formerly Used Defense Sites (FUDS) program within DoD. Under FUDS, the Corps of Engineers surveyed the disused WACS sites and found nearly all had significant contamination by asbestos (used in seemingly every building material in the '50s and '60s) and leaked fuel oil.
As a result, most White Alice sites were demolished between 1986 and 1999. The cost of demolition and remediation in such remote locations was sometimes greater than the original construction. No WACS sites remain intact today.
Postscript:
A 1988 Corps of Engineers historical inventory of WACS, prepared due to the demolition of many of the stations, mentions that meteor burst communications might replace troposcatter. Meteor burst is a fascinating communications mode, similar in many ways to troposcatter but with the twist that the reflecting surface is not the troposphere but the ionized trail of meteors entering the atmosphere. Meteor burst connections only work when there is a meteor actively vaporizing in the upper atmosphere, but atmospheric entry of small meteors is common enough that meteor burst communications are practical for low-rate packetized communications. For example, meteor burst has been used for large weather and agricultural telemetry systems.
The Alaska Meteor Burst Communications System was implemented in 1977 by several federal agencies, and was used primarily for automated environmental telemetry. Unlike most meteor burst systems, though, it seems to have been used for real-time communications by the BLM and FAA. I can't find much information, but they seem to have built portable teleprinter terminals for this use.
Even more interesting, the Air Force's Alaskan Air Command built its own meteor burst network around the same time. This network was entirely for real-time use, and demonstrated the successful transmission of radar track data from radar stations across the state to Elmendorf Air Force base. Even better, the Air Force experimented with the use of meteor burst for intercept control by fitting aircraft with a small speech synthesizer that translated coded messages into short phrases. The Air Force experimented with several meteor burst systems during the Cold War, anticipating that it might be a survivable communications system in wartime. More details on these will have to fill a future article.
[1] Crews of the Western Union Telegraph Expedition reportedly continued work for a full year after the completion of the transatlantic telephone cable, because news of it hadn't reached them yet.
[2] Eliding here some complexities like GTE and their relationship to the Bell System.
[3] Perhaps owing to the large size of the country and many geographical challenges to cable laying, Canada has often led North America in satellite communications technology.
Note: I have edited this post to add more information, a couple of hours after originally publishing it. I forgot about a source I had open in a tab. Sorry.